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Introduction

To the mathematician, the interest of experimental design lies in the
" combinatorial problems presented by the search for and the enumeration of designs of
different types. To the scientific investigator, the more important features of experi-
mental design are those that concern the choice of design for a particular purpose
and the integration of well-chosen designs into a good programme of investigation.
The statistician needs to bridge the gap between the two.

In this paper, I discuss topics connected with the choice of design, giving
special attention to the role of the statistician and to. some of the ‘ways in which
computers can now contribute to the design and interpretation of experiments. I
shall concern myself mostly with individual experments, though I recognize that what
1 say could be extended to series of experiments whether planned for simuitaneous

execution or as a sequence in time.

The problems I must discuss are no easier than those of combinatorial
theory for design, but they require very different approaches. In most of them,
neither questions nor answers can be exactly defined: their full consideration re-
"quires general experience of applied statistics, knowledge of the particular field of
'experimentatio'n, and judgementi, 1 shall indicate some general principles in design-
ing real experiments; I hope also to make the reader aware of, even interested in, the
~ difficulties of satisfactory definition and communication.

University courses on statistics, especially those intended for. educating
future professional statisticians, usually concentrate on formal ‘mathematical - theory,
because this employs well-defined concepts and is well-documented for teaching and
reference. Many of us who teach the courses and who write the text-books also
spend much time in the practice of" statistics, as consultants to academic colleagues
or collaborators-in investigations into various-fields of science and technology. Yet
we seldom transmit to students the benefits of the experience we have gained in years
of applying statistical techniques to the real world. We instruct in the theory, and
perhaps remember to tell our students that they too must have years of experience

*Based on a lecture delivered in the Medical University, Pécs, Hungary, in Septembér 1970,
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before they become competent practitioners! To some extent doubtless this is true.
Nevertheless, I believe that one of the most urgeat tasks for statisticians is to trans-
form what we have-had to learn by experience into a more systematic body of
knowledge that will expedite learning by our students. We must avoid undue

_ dogmatism, but we should where appropriate express forcefully our views on the

responsibilities of the statistician and the manner of his involvement in research
investigations; we should expose these views to critiqal discussion, seeking therefrom
the emergence of an acceptable codification of practice.

2. Purposes of Quantitative Experiment

I shall restrict myself to experiments intended to produce comparative
assessments, qualitative or quantitative; thus I exclude an experiment intended solely
to demonstrate the feasibility of a chemical synthesis or the occurrence of a pheno-
menon. The obvious example is that of an experiment in which "biological or
physical entities are assigned to either of two treatments, a.measurement (often
conveniently termed a yield) is made on each, and the set of yields is used in assessing
the relative merits of the treatments. The measurement is commonly a numerical
value on a continuous scale, but can be a qualitative epithet (“survived”, “dead”, or
““good”, “‘damaged”, “broken”). The intention to compare two or more treatments
is essential, .

At least three types of comparative experiment can be distinguished:

- ; Pilot experiments,
Decision experiments, -
Learning experiments.

A pilot experiment is conducted to provide preliminary information that
aids the planning of definitive research. Its object may be to suggest which treat-
ments can be omitted from the main experiment because they are useless, to indicate
the form of a response curve so that levels of a quantitative factor can be well
chosen, or to guide the judgement of replication from roughly estimated variance
components. All these matters concern the statistician who advises on the definitive
experiment.” Moreover, if optimal utilization of limited resources is important,
questions will arise about how much (if any) of these should be expended on a pilot
experiment. The statistician may be asked whether improvements in design coming
from expending 159% of resources on a pilot is likely to compensate for loss of repli-
cation later. The possible situations are so diverse that no well-defined theory exists:
indeed, as far as I know even general principles have not been stated. Experiments
for screeing a large number of treatments or materials, in order to select a few for a
definitive experiment, may be included in this category. ’

Decision experiments are undertaken in order that a choice may be made
between treatments for practical use, Obvious examples are the decision between
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three concentrations of a chemical reagent to be used in a manufacturing process
and the decision whether or notto adopt a dietary supplement asa standard practice
in pig rearing. For optimal planning, costs must be well specified, these including
costs of experimentation in relation to experimental design as well as the value
placed on increased production. The experlments are usually simple in treatment
structure, because interest has been narrowed to a few possibilities. They can
provide uncontroversial uses of subjective prior distributions, by which the initial
uncertainty of the magnitude of an effect may be expressed, in order that an experi-
ment may be planned to maximize the probabmty of a correct decision.

Learning experiments are those of greatest concern to general scientific
research. Knowledge of any field of science advances by continued incorporation
and interpretation of new information rather than by decisions that statements are
or are not true. Interest usually lies in estimating parameters that measure properties
of treatments with the maximum precision that resources allow rather thanin making
decisions or testing significance. For example, a decision experiment may seek the
conditions that approximately maximize the ordinate to a response surface, but a
learning experiment may be concerned with the whole form of that surface in a
prescribed region.

In practice, these types are not always easily distinguished.. Thus a
* programme of agronomic research may use a series of factorial experiments initially
for the exploration of the dependence of production on the inter-relation of various
conditions of crop growth; subsequently, results from the same experiments may
decide what advise shall be given to farmers.

3. The Statistician

The statistician must be far more than the human instrument by which
experimental yields are analyzed. He should be consulted on the selection of treat-
ments and on the numbers of levels of different factors. His experience may help
in the specification of the physical dimensions of units for treatment, the ages of
animals, the judgement that the production of several different machines rather than
only one be used as experimental material, and so on. He may assist in specifying
what measurements are to be made: the purpose of an experiment determines one or
two characteristics to bé measured, but the desirability of making supplementary
‘measurements often has statistical undertones. Additional measurements may improve
precision (by covariance analysis or other form of standardization), may elucidate
the developmental aspects of treatment effects, or may provide information of
secondary importance at a small marginal cost. .

4. The Computer

I asked a friend, who is experienced in animal experimentation, in what
ways he thought computers ought to affect design in animal research. He replied
“None”, but subsequently admitted to some exaggeration, I am here interpreting
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the role of statistics in experimental design more broadly than in this brief
conversation, :

No badly designed experiment will be made good merely by analyzing its
results on a computer. However, a computer makes possible calculations that
otherwise are intolerably laborious. Hence, one may be able to adopt better designs
because some aspects can be examined in advance. At the stage of analysis, more
comprehensive calculations may improve interpretation of experimental results,
I want to emphasize the discriminating use of computers, stressing the dangers that
arise if they become masters instead of servants. ‘

5. Requirements of Design

The internal structure of an experiment must permit inferences both valid
and relevant to the circumstances of their use. The main requirement for internal
validity of an experiment is the random allocation of plots* or units to treatments.
Constraints on complete randomness are permissible, and often desirable, particularly
those implied by the arrangement of an experiment in blocks ; within the residual.
freedom left by the constraints, random allocation is essential. Non-random
allocation, seldom unavoidable or excusable, always introduces risks of biases that
are the greater danger because they may pass unsuspected when results are examined.
An experimenter who refuses to randomize must accept responsibilities for the
untestable assertion that he is not distorting his results : yet the wish to depart from
strict randomization is commonly based upon a belief that the nature of the
allocation will affect the results.

The preparation and listing of the randomization required for an experi-
ment is a task that can well be undertaken by a computer. When the treatments
and structural constraints for the design have been specified, the computer should
be able to refer to a store of random digits (or to a generator of pseudo-random
digits) and to "~ produce a listing that allocates treatments to plots. Moreover, the
format should be planned to be most convenient for the experimenter who must
implement the instructions. In an earlier version of this paper, I wrote that the
programming required had not yet been systematically undertaken ; a few weeks
Jater, I was delighted to learn that one of my own staff had now written such a
program ! In the past, the time required for randomizing has sometimes been
quoted as an excuse for not using independent randomizations for each of a series
of experiments of the same simple desiga ; to-day, 500 random arrangements of one
basic design can be produced with little effort, rapidly, and in a form suitable for
immediate distribution to experimental sites. :

*Hereafter, the word plot is used for the ultimate unit to which a treatment is applied,
whether it be an area of land (the natural meaning), an animal, a bacterial culture, a piece of
machinery, or even a complicated unit such as the two front wheels of a vehicle for one week of
test of a pair of tyres. :

.
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- When conclusions from an experiment are applied to practice, experimental
conditions and the population of plots from which those in the gxperiment were
taken may be vitally important. Despite insistence by statisticians that their

science is objective, some subjective judgement is then inevitable. No one expects -

inferences from an experiment on the feeding of rats to be applicable at all
exactly to the feeding of humans. To what extent are inferences from an experi-
ment on one strain of rats applicable to another strain or at another age ?
Many such questions can be dealt with by extending the scope of the experiment,
using factorial design or repeating trials at different times and places.
Nevertheless, an investigator is always limited in the number of different conditions
that he can include, and he therefore judges which he thinks most important.
Similarly, anyone using published results from many sources as a guide to action,
say in the management of dairy cattle, is obliged to exercise judgement on what
differences are important. There may be widespread agreement that breed and type
of housing are important to the relevance of experiments, and that phase of the
moon or colour of shirt worn by the man in charge of the stock are unimportant ;
on many other factors, opinion will be far fiom unanimous. '

In planning an experiment, the statistician must ensure clear definition of
the population of conditions being studied, so as to avoid dangers from uncontrolled
heterogeneities. Secondly, and a little less rigorously, he may help in ]udgmg
whether experimental materials and conditions can reasonably be regarded- as
representative of a population to which conclusions are to be applied.

6. What the Computer Does Not Do

A computer does not absolve the investigator from the need to plan
experiments carefully, nor does it remove the distinction between planned experiments

and miscellaneous observations. Unfortunately, writers of computer programs, and

even statisticians bewitched by computers, sometimes mislead on this.

Confusion arises because a computer can easily handle large matrices.
Any analysis of variance can be computed as a form of multiple regression, although
this outlook is not conducive to clear revelation of truth. Consequently, if an
experiment has been “planned” without attention to balance, symmetry, and
orthogonality, the computer can complete an analysis that would have been
intolerably laborious with desk calculators. If such an experiment has been
performed, it can be analyzed ; almost certainly, it should not have been performed.
The belief. that statisticians recommend symmetry in design primarily in order to
facilitate analysis is false. The real reason is that, taking into account classifications
inherent in the. experimental material or constraints that must be imposed,
symmetry usually leads to estimation of the important comparisons between
treatments with a precision that is maximum for the available resources. On

occasion, a special purpose underlying an experiment causes the best design not to

be the most symmetrical. A first duty for an investigator is to define the purpose
of his experiment ; if he then choosgs his design haphazardly (or, as some have
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unwisely proposed, selects treatments at random from a large set), he is deliberately
evading his responsibilities. ‘

More extreme heresy is exhibited by those who think that planned experi-
ment can be replaced by multiple regression on non-experimental records. This
is often a strong temptation, especially in the medical and social sciences. Hospital
records of patients suffering from a specified disease may include dosages of
various drugs, diet, duration of stay, and other measures of the treatment given.
A regression equation of some measure of subsequent health on variates represen-
tative of hospital care may be of interest descriptively, and may suggest problems
for further study; it cannot itself provide evidence for causal influences. For
example, recovery may be less complete for patients who received the more intensive
drug therapy and who stayed the longer in hospital, not because these factors were
themselves harmful but because the patients judged to require more treatment and
longer hospital care were those initially more severely diseased. The association
may be statistically highly significant yet tell nothing about whether increased dosage
of a drug aids or hinders recovery. Randomization is lacking : trustworthy inference
is impossible. (This is not to condemn a cautious analysis of the record as a basis for
arousing suspicions about the effects of various factors and suggesting hypotheses
that may later be more critically examined.)

7. The Computer as Labour Saver

For many years past, knowledge of statistical method and availability of
mechanical aids to statistical calculation have sufficed to make computational
simplicity seldom a mnecessary limitation on the planning of experiments.
Occasionally an experimenter wisely adopted a design simpler than might have
seemed ideal, cither because his computational facilities were inadequate or because
a slight mistake in conduct of ths expzriment would vastly complicate the correct
analysis. The computer should remove this difficulty.

Perfection is not yet achieved. Indeed, the number of entirely satisfactory
programs for the statistical analysis of experiments is still too small. Anyone
who states that his computer installation has a standard program package for
analyzing experiments should be regarded with scepticism (but not with disbelief).
Probably this will not go beyond the simplest of designs, aad provision for producing
summary tables may be quite indequate ; anything more ambitious, or modifications
to take account of missing obeservations, transformations, and other complications
will then require special programming. For example, a few years ago, I advised
use of lattice designs for certain experiments. A year later, I received the results of
three experiments and wanted analyses quickly as a basis for further research. No
program existed. I was the only person involved who  could have written one, and
I did not have the time. I had assistants who could work desk calculators, and
therefore the experiments were analyzed in the old-fashioned manner.

Such difficulties will continue until we statisticians have performed our
duty of writing good general program packages. These must have clear instructions,
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be reasonably easy to use, and produce good output. They must be much more
than transcriptions of method from standard text books into a computer language.
For example, they should permit much fuller examination of the adequacy of stan-
dard linear models than has been practicable with desk calculators, and should
contain facilities for dealing with some types of breakdown of linearity. They must
permit input of data in several different forms, for scrutiny and monitoring checks
on data that will draw attention to all abnormalities, and for standardizations and
transformations needed before analysis. Output of results should be by tables that
do not require rearrangement or further calculation before being interpreted by the
investigator (section 14). They must take account of misfortunes such as randomly-
occurring missing observations. They must permit the user to nominate special
comparisoas among treatments for examination and tabulation, to require output
of individual plot-residuals, and to call for completion of other special laborious
calculations. Although barely possible to-day, they will soon be expected to allow
conversational interaction between computer and user, so that further steps in the
analysis can be specified after inspection of results from preliminary stages. A few
excellent programs already exist, but scope for further developmentto meet the
demands I have stated and others will remain for some years.

8. The Cheice of Design

If conditions permit, a design with maximum symmetry, chosen from the
extensive range described in standard sources, will be the wisest choice. Occasionally
other constraints and demands may prevent this. For example, within the frame
work of limited resources, an experimenter might wish that certain comparisons
between treatments be more precisely estimated than others: he might hope to specify
approximately the ratios of variances and to determine the optimal design in a
particular system of blocks. I believe that a computer program that would produce
at least a good approximation to the optimal ought to be possible, but I do not
know of one.

I'shall illustrate another situation in which limitation on materials‘prevents
adoption of an ideally symmetric design. Suppose that treatments A, B, C are to bc
compared with one another and with a control treatment, S, using at most 31 plots
arranged as:

1 block of 6,
1 block of 5,
2 blocks of 4,
4 blocks of 3.

This might occur in work with pigs, where experience suggests that animals from
the same litter be grouped as a block and the 8 available litters have the sizes stated.
I assume that o2, the variance per unit within blocks, -is constant over all blocks.
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symmetric design could be achieved by ‘discarding 2 units from the first block, 1 -
from the second, and then having a full replicate of the 4 treatments in blocks of 4 |
each of the possible sets of three treatments (SAB, SAC, SBC, ABC) would be

assigned to one block of 3. The variance of the estimated difference between any

pair of treatment means is then easily proved to be 0-342.

Table 1 shows ten asymmetric ways of allocating treatments to blocks ;
many others exist, but these have been chosen to look moderately well balanced
while having some excess of units assigned to treatment S. Table 2 shows, for each
design, the variances for the six differences between pairs of treatments. Several
designs improve appreciably on the symmetric design first mentioned. If the aim isto
compare each of A, B, C, with S, and little interest attaches to comparisons among
A, B, C, designs I and 10 arc superior to all others examined. If comparisons between =
A, B and C are equally interesting, possibly designs 5 and 9 will be preferred. My
purpose here is less to decide the best design for this problem than to illustrate the fact
that any wise decision requires a summary such as that of Table 2. Designs such as 4
or 7 can be rejected unhesitatingly because at least one other (e.g. 5) is better in respect
of every treatment difference. The choice between 5, 9, 10, however, must rest upon
the relative importance attached to different features of precision. Some would
argue for basing decision on the mean variance of the three or six treatment differen-
ces, some would prefer a minimax rule : in practice neither is satxsfactory if used
uncritically, though often both may lead to much the same choice.

The calculations for this small ‘experiment were easily made without a
computer. A more thorough examination of possible designs, or the study of a
large and more complex experiment, would be practicable only with good assistance
from a computer. Evidently the computer could be programmed to make an
-exhaustive search of all designs, or of all satisfying some conditions that exclude the
obviously useless. More interesting would be a program that moves step by
step towards a design optimal in respect of some criterion based upon variances.
At the recent Biometric Conference in Hannover, Justesen described a systematic
process which shows considerable promise for further development. A further
interesting constraint is introduced if limitations of supplies for certain treatment

limit the replication of these. For example, such a design may be requxred for early
tests of new varieties of a crop when seed is scarce.

9. The Size of Experiment

If an expriment is not restricted by availability of materials, its size can satisfy a
condition on the quality of the results. The commonest, but not the only rele-
vant, condition would specify the maximum variance that will be tolerated. This
requires consideration of the familiar formula for the variance of a mean, o%n,
-which involves no computational difficulty ! Uncertainty about the value of o®
usually makes the inference untrustworthy ; although theory based upon estimates
of c® has been suggested; the fréquency distributions obtained are complicated.
Since any estimate of ¢ must be based upon one or more previous experiments,

o
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I think it unlikely that formal distribution theory can contribute much without an
empirical component. Only if experimental conditions are very tighty controlled is
6% in the n ew experiment likely to Dbe identical with o® in earlier experiments, so
that distribution theory solely dependent upon sampling varjation under fixed condi-
tions may be seriously misleading. If progress is made here, dlmost certainly com-
puter evaluation of distributions will be needed.

An alternative to deciding in advance the size required for an experiment
is to employ a sequential stopping rule. In some fields of research, the time
scale or other comsiderations make this inappropriate, When it is appropriate,
the organization of a project is likely to require some kind. of advance estimate of
total size. Except for rather simple sequential plans, properties of the stopping rule
(such as the average number of subjects that will have been tested when the experi-
ment terminates or the probability that a specified number of subjects is exceeded)
are. mathematically intractable. A computer can be used .to' simulate experimental
records (Section 13), by gencration of suitable random elements, and the frequency
distribution of the size of experiment can then be studied empirically.

10. Planning for Variates

An experiment will be intended to compare different categories of plot or
other experimental unit, distinguished in respect of treatments, without bias, with
maximum precision, and under conditions that ensure relevance to subsequent
application of the results. The computer does not modify this. Usually, however,
the aim will be understood in relation to one variate of greatest importance (which
may itself be calculated from two or more distinct measurements), or to a com-

“prontise between optimal requirements of several variates.

Some experiments easily generate large numbers of variates. For example,
any study of meat production can produce many carcase measurements, and an

~ experiment on milk yields is likely to include measurements of many physical and

chemical properties. If a suitable computer program for one variate exists, it can
produce analyses and tabulations for each variate in turn. This not only allows
fuller utilization of the information recorded : it encourages the investigator to plan
broadly for the collection of observations. "Thus the aims of the experiment may be

“extended, and plannmg in respect of precision may balance the needs of different

variates.

_ Nevertheless, proliferation of variates must be kept within bounds. An ex-
periment may easily generate so niany variates, and so many statistical summaries, that
the investigator, is smothered by computer output and his attention is diverted from
matters of prime importance. I remember an instance of an agronomist seeking advice
from a statistician about the analysis of his latest series of experiments. When he
tried to discover what variates should be submitted to full analysis or given priority,
the statistician found rational decision impeded by the fact that the experiment had
not yet digested the computer output from earlier experiments analyzed two years
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previously ! Research might have progressed more effectively had effort been con-
centrated on three or four primary measures of yield.

Records of a variate are no use as long as they merely remain on file with-
out any form of statistical examination. Neverthless, it is sometimes better to decide
against analyzing a variate after a brief scrutiny, or even arbitrarily, than to increase
output to an extent that may obscure rather than enlighten. The statistician must
- also remember that some of the variates directly measured may not be those that
should be separately analyzed. Uncritical transfer from original records to a standard
computer program should be discouraged. For example, if body temperatures of
human patients were recorded twice daily for two weeks, 28 separate analysis
. probably would not be very helpful ; derived measures of average temperature for.
the period, rate of change, and daily range might be more informative. In a potato
experiment, the produce of each plot may be divided into 6 size groups, and the
numbers and weight of produce from each recorded. As separate variates, these
have little interest, and anaylsis will be confused by complex intercorrelations.
Consideration of the frequency distribution of size of . individual tubers may give
better variates for analysis, such as mean size, variance of size, percentage exceedlng
a minimal marketable size, and so on.

11. Multivariate Analysis

If for a particular design a program for the ‘analysis of variance of one
variate exists, it can readily be extended to simultaneous variance and covariance
analysis for several variates. :

Classical covariance analysis, involving adjustments in treatment means for
one variate by reference to its error-regression coefficients on other variates, can
enable some extraneous sources of irrelevant variation to be eliminated. Proper
randomization of the original design and use only of concomitant variates not them-
selves influenced by treatment are essential. The methods are well- known, but for
complex designs the arithmetic becomes extensive. The computer removes this labour
and also the practical restriction to having at most three simultaneous concomitants,
though I doubt whether we shall often meet situations in which covariance on four
or more concomitants is useful. Possibly more important is the practicability of
trying alternative covariance schemes, including non-linear regressions if a curvature-
is suspected. Moreover, emergency devices for the rescue of experiments that have
suffered disaster, through accidental losses or confused recordings of observations of
unexpected environmental trends, can be constructed in terms of dummy covariates..
Some study is needed of the consequences for an analys1s of choosing the apparent .
best out of many covariance schemes.

" 1 hope I have already (Section 6) sufficiently condemned use of multiple
. regression as a substitute for the proper designing of experiments. Nevertheless,

‘regressions arising in covariance analysis may suggest relatxonshlps that can rightly
‘form the subject of further experimentation. , ,
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When all variates . are of intrinsic interest, the situation is very. different
and a general study of the effect of treatments on all variates may be wanted.

JInspection of a full analysis of squares and products may be valuable to the. experi-

enced statistician. For example, two logically distinct variates may be seen to be so
closely correlated that, under the conditions of the experiment, they are effectively
equivalent. At a more sophisticated level, interest lies in mathematical techniques

. that determine a function of the variates with defined optimal properties. Factor

analysis, canonical analysis, and principal component analysis are among the best
known. As numerical devices for the exploration of data, and for stimulating the
generatian of hypotheses that can subsequently be studied more deeply, they have
their uses, but those who employ them naively are apt to be misled. A combination
of variates determined from internal evidence of the data will have its own experi-
mental error and may be more meaningful when refined by the investigator. For
example, in a long-term ex’periment‘ on dairy cattle, milk yields might be recorded
for three successive lactations. A formal multivariate analysis of these variates

might suggest
1.4x;+ 1.7x5-+1.3x;5

and

1.1x1—0.3x2¥0.9x3

as having some optimal property in explanation of total variation. These functions
have no natural meaning and are unlikely to be repeatable in other .experiments.
Howe ver, they point to total yield,

X1 +x+ X5,
and chénge over the period of study,
X1 —Xy,
as more meaningful alternatives so closely correlated with the first two as not to

depart far from optimality. Further difficulties arise when variates differ in units of
measurement. .

I am not asserting.that these forms of multivariate analysis are wrong or
valueless ; indeed, I believe that we should explore their potentialities thoroughly now
that computers ease the labour, but their indiscriminate use is folly.

12. The Transformation of Variates

In discussing the transformation of data, elementary text-books of statistics
commonly convey the impression that the subject is easy : look for warning signals
in the data and, if these appear, analyze instead the square root, the logarithm, or
other stated function of each observational value. On the other hand, some
papers in statistical journals make immense mystery of transformations, suggesting
adjustments and other special tactics the practical use of which is small because the
information on which to base them is seldom available. When an experiment is
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intended for the study of a specified variate, to report results in térms of a mathemati-
cal transformation of that variate is irresponsible and possibly useless. Here text-
book advice is rarely good. Data may be transformed in order to reconcile them with
requirements of valid statistical analysis, but statistical theory has neglected the need
to present conclusions on the original scale.

With a computer different analysis of the same data can be compared. Explo-
ration of the stability of conclusions under various assumptions may help to justify
an opinion that the exact choice of transformation matters rather little : my own
experience is that data for which theory indicates the desirability of transformation
can often be safely analyzed and interpreted as they stand. I illustrate by a very
simple experiment. Table 3 shows systolic blood pressures in two sets of 10 cats
after exposure to alternative drugs that should reduce blood pressure. These would
ordinarily be analyzed by a simple t-test. Although cats on drug B varied in blood
pressure substantially more than those on drug A, I personally would not have judged
the data to need transforming. However, I have studied the variability by employing
the useful family of transformations.

y=(x+g)*.

With ¢=0, this includes square root, cube root, reciprocal, and other simple power
transformations ; the inclusion of ¢ gives extra flexibility. If p tends to zero, the
transformed variate behaves like log (x+¢), as may be seen by cons1dermg the
modified form

y*=[(x+q)*—1]/p.

If g becomes large, the transformation behaves like x itself, as of course it does for
any g and p=1.

For many combinations of p and g, I looked at two quantities obtained
in the analysis of », the ratio of the mean square deviations for the two drugs and
the value of the ¢ statistic. Tables 4 and 5 contain some results. A variance ratio
test of the homogeneity of the mean squares for 4 and B rejects the hypothesis of

equal variarces if the observed ratio exceeds 4.0 or is less than 0.25. Table 4 shows _

the ratio to vary widely, and to be not much above the lower limit when p=1
The value of 1, on the other hand, is remarkably stable. By coincidence, it seems
to achieve its minimum near to p=1. Nevertheless, even exireme transformations
such as p=4.0, ¢=9 or p=2.5, g=—4.0 (which might be adopted if the criterion
of making the ratio of mean squares nearly unity were enforced) alter the value of ¢
only from 2.5 to 2.3. For significance at probability 0.05, r must exceed 2.1 : from
Table 4, any combination of p and g that makes ¢ less than 2.1 may be judged
manifestly absurd.

: To estimate the difference in means on the original scale is not easy. As a
rough guide, I have taken the mean of y for each drug and used the inverse
transformation

X=:'7 —;‘— _q’

o
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followed by subtracting one X from the other. This quantity, which is certainly
not an unbiased estimate, is shown in Table 6. More interesting, perhaps, are the
pseudo-f values in Table 7, the quotient of each entry in Table 6 by an approximate
standard error ; the latter is calculated in the ordinary way from a pooled mean
square and the differential coefficient dy/dx. Comparison of Tables 5 and 7
illustrates the robustness of ¢ under approximations in calculation. Although values
in Table 7 change rather more with changes in p and g, in the central region of the
table the two tables are very much alike.

This study, practicable only by computer, reassures me that Table 3 is
satisfactorily analyzed without transformation. I believe that statisticians will
develop greater interest in this kind of approach. After a survey of a family of
transformations, one would like to choose that most suitable to the data, to make
inferences by its use without any bias consequent upon how it was chosen, and
eventually to return to interpretation on the original scale of measurement. More
rigorous theory is needed.

13. The Computer as Experimental Instrument

The computer can itself become an experimental instrument when it is used
in simulation. So extensive are the possibilities that they seem likely to cause some
statisticians to become in part experimental scientists. The heavy demands on
computer time, however, indicate the desirability of seeking an analytical solution to
a problem before recourse to simulation.

The computer cannot fulfil the experimenter’s dream by permitting him
to compare real treatments without the labour of a real experiment ! Simulation
should enter earlier, to facilitate the comparison of alternative designs. Section §
jllustrated how relatively simple designs can be compared in terms of their variance
patterns. A complex network or sequence of experiments may be less easily studied
by direct evaluation of variances, either because general formulae would be exceed-
ingly clumsy or because the relevant criterion for good experiment is not just a
function of the variances. In animal breeding, questions arise about numbers of
sires and of dams to be tested, numbers of progeny to be raised from a mating,
length of time for which the performance of progeny is to be recorded before
selection of parents for the next generation, and number of generations. How shall
efforts and resources be divided between different stages of the program ?
Assumptions may be made about the genetic and environmental determinants of
economically important characters, including of course the variation attributable to
random sampling. Although the investigator is constrained by limitations of
resources and by requirements on the use of the results, he still has great freedom of
action. He can have more sires at the price of fewer dams per sire, or more
generations at the price of shorter test periods per generation. Within the coOns-
traints, what policy maximizes the gain from the whole programme of breeding and
selection, or minimizes the risk that the gain will be too small to be economic ?
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A computer cannot produce the final animals or even predict their quality exactly.

It can be used to study alternative deployments of resources, perhaps simulating the .

whole selection programme for each and finding the average performance from 1000
different sets of initial animals. Thus not only may the optimal conditions be found
in a problem too complicated for exact mathematical analysis, but the risks of
failure to achieve precisely optimal conditions because of uncertainties about the
values of parameters can be assessed. Thereafter, selection policy can be based
upon reasoned judgement about desirable conditions, and upon knowledge of how
robest the recommendations are. Much the same analysis arises in connexion with
plant breeding. The problem is also closely paralleled by that of screening large
numbers of chemical compounds by a preliminary test intended to detect which of
them may have useful therapeutic properties.

14. Can the Computer Aid Interpretation ?

The interpreter of an experiment or set of experiments must relate results
to other information in the same field and prepare a consistent statement of conclu-
sions: this is usually a final duty for the experimenter. Good tabulations of means
and other numerical or graphical summaries of data are essential. Manual construc-
tion of summary tables and diagrams is laborious, and is frustrating tecause only a
few of them are eventually used; consequently the- statistician is often tempted to
decide which to prepare rather arbitrarily. Human reaconirg and judgement are
essential, but the computer can assist the rapid scanning of many different summaries.

Many years ago, I was consulted about research into the keeping quality of
milk. Samples of milk stored in various ways were subjected to numerous tests,
some objective and perhaps not closely related to what the consumer regards as good
or bad milk, others based on consumer criteria and inevitably more subjective. The
aims were less well defined than was desirable, but one clearly necessary step was to
examine the relations between most pairs of variates; as these might be non-linear,
many scatter-diagrams were needed. How much easier such a task is to-day! The
records of all variates can be stored on tape or disk, and a very simple program can
recover the information on a particular pair of varjates. Even without special hardware
for visual display or for graph plotting, aline printer can be used to produce diagrams
adequate for the rapid inspéction appropriate to this kind of problem. For extensive
data, the diagrams are especially valuable in drawing attention to non-linearities or
indicating where transformation may lead to a simpler representation; they are more
immediately useful than correlation coefficients and regression equations, although
these are easily calculated at the same time if requested.

A program for graphical representation, or for a systematic preparation of
tables, helps the interpretation of data by suggesting on what the statistician should
concentrate in a more detailed analysis. Indiscriminate use can be dangerous if it
overwhelms the user with computer output. I once talked with a scientist who had
administered a battery of 500 questions to several thousand human subjects. The
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answer to each question was necessarily “Yes” or “No”; he proposed to form all

_possible 2 X2 tables betwzen pairs of qusstions and to calculate X2 for each as a

first stage 1in his study. He was insistent that he needed to have the 125,000 tables
and X2 values in front of him before he decided what to do next. He could not be
brought to see that inspection of 10 kilometres of* line-printer output was likely to

obstruct rather than to expedite understanding.

‘Can we learn what features of diagrams and tables distinguish those the
investigator will use further from those he will discard ? If so, the computer could be
programmed to do its own preliminary scanning of tables and to be more discrimina- -

' ting in its output. Anything as uncritical as-asking the computer only to print tables

that showed close or statistically significant relations between variates could be
thoroughly inadequate. The user of -the program must always be allowed to over- -
ride the standard rules, by insistence that tables of his own choice be produced.

-- Still greafer flexibility of analysis will come with the development of multi-

ple access to large computers from remote consoles. Data can be held in store and

the console can be used to. apply small segments of a standard program, or even
ad hoe instructions written directly on the console, so as to build up a pattern of
analysis most appropriate to the particular data. No longer will it be necessary -to
formulate a comprehensive plan of analysis at ‘oné time, and the interpretation of
some types of data may be greatly aided when a full exploitation of these new
facilities becomes possible. I do not think this will become of major importance
for standard experiments, but' it will certainly be valuable in some circumstances;
for example, the questions discussed in Sections 8 and 12 may prove particularly
amenable to this approach. : :

Not least important in the interpretation-of statistical -analyses is the form
of output that must be inspected. General programs are often deplorably unsatis-
factory in the quality of output. Until recently, storage capacity has been a serious
limitation on programs, and programmers have been. reluctant to use space for
instruction on the format of tabulations. Moreover, preparation of these instructions
is a tedious part of program writing, disliked by those more interested in analytical
inganuity. This disliks must bz overcoms ! A good general program should produce
sammary tables that are well labelled, easily. read, and after minimal modification
suitable for transfer ‘to reports for publication. One should not have to read an.
analysis of variance that gives only mean squares, suppressing the sums of squares
and various sub-totals inherent in the structure of the analysis, Only as a rare
exception should tables of means or entries in an analysis of variance be expressed
in floating point notation: fo program for location of the decimal point as a basis
for constructing neater tables is no more than a minor nuisance to the programmer.
The reader of -the output should not have to .refer to other records in order to
discover units of measurement, or to identify the variates used in tables. Names of
treatments also should be properly identified in the output, even though-a simple
coding be used in tables, In the analysis of factorial experiments, output that merely
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lists treatment combinations and mean yields, leaving the reader to construct multi-
factor tables, is thoroughly bad. Any program for a large experiment should permit
the user to nominate the multifactor or other tables that he wants. All standard
errors likely to be required, and any special adjustments of means, should be part of
the standard output. Much time can be wasted in manual disentanglement of poor
computer output in order to prepare for final presentation. The computer encourages
analysis of more variates than was customary 20 years ago: it should be made to do
all the tedious work needed for good preseritation.

The existence of good computer facilities and reasonably good programs
can cause the most important conclusions from an experiment to be buried beneath
a large body of unimportant output. I believe that not the least of contributions to
the interpretation of data is to incorporate in every program a good range of options
on output. Quite rightly to-day we ask for more analyses and more details than
when we depended upon desk calculators. The custom of asking for everything, in
order to have a look at it and then to discard what is not informative, can do great
harm by diversion of attention. If an experiment has produced a vast amount of
data, decisions must be taken that certain variates, or certain aspscts of the data,
will not be reported in detail. Some decisions of this kind are best taken before
analysis, others should be made conditional on criteria that are specified within
the program and the printing or suppression of the relevant output should be
controlled at that point, and certainly a few may have to be deferred until after an
experienced scientific eye has scrutinized the computer output,

15. Summary

The paper begins by defining comparative experiments and distinguishing
between different purposes for which these are conducted : as a pilot for definitive
experiments, for technological decision, for scientific learning. The functions of the
statistician and of the computer are then briefly stated.

The first objective of experimental design is that experiments be relevant to
the problem studied, free from bias, and as precise as resources permit (Section 5).
The computer can help in many ways, but those who employ it must always keep
in mind its moronic character as well as its memory and its speed (Section 6).
Important though computer speed is, one must not forget that the existence of a
program is a pre-requisite of speedy analysis (Section 7). A computer cannot of
itself determine a suitable design for an experiment; when relevance and unbiasedness
have been secured, however, it can be used in various ways for comparing the
merits of different designs and different allocations of resources (Sections 8, 9, 13).

- - A good design for an experiment is worthless if the aims of theex periment
are ill-defined, or if the investigator lacks ideas on how to exploit the situation that
he is studying. In Section 10, I discuss how availability of a computer should affect
the aims of an experiment, by permitting the investigator to plan for a broader and
deeper study that will depend upon much more -arithmetic,
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A well-designed experiment with well-conceived aims will fail to make any
impact on science or technology unless good statistical techniques are applied.
Sometimes little more than simple averaging or graphical presentation is needed but
extensive bodies of records may deserve a far more complicated analysis (Section 7).
Although in one sense the analysis is distinct from the design, the nature of the
analysis must be greatly influenced by the design. 1 have therefore choesen not to
discuss details of analysis, but to comment on general principles that are influenced
by the computer revolution. I note particularly the opportunity for thorough study of
the implications of transforming variates (Section 12) and the need for better use of
multivariate analysis now that the computational burden is so. much less serious
(Section 11). I am particularly concerned by the need to organize computer programs
so that statistician and all scientific investigators can obtain their own selections of
tables and digrams, in clear and easily utilized format (Section 14). Above all else,
the computer must not be allowed to become a burden instead of a help: it musi
not pour out “summaries’” of the data in quantity far exceeding the capacity of its
user to absorb and interpret.
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TABLE 1-

Stractures of Ten Designs for an Experiment in Raidomized Unequal Blocks

Design 1 Design 2 Design 3 Design 1 Design 5
SSABCC SSAABB SSSABC SSAAAA SAABBC
SSABC SSABC SSABC SSAAA SABCC
SABC SABC SABC SBBB SABC
SABC SABC SABC SCCC SABC
SAB scc ' SAB SBB SAB
SAB SAB SAB SBB SAB
SAC SAC SBC SCC SAC
SBC SBC SAC SCC SBC

|

| Design 6 Design 7 Design 8 Design 9 Design 10

| .

‘ SABBCC SSSABC SABBCC SAABBC SSSABC

| SSABC SAABB SAABC SABCC SSABC
SABC SACC SABC SABC SABC
SABC SBCC SABC SABC SABC
SAA SAB SAB SAB SAB
SAB” SAA sAC SAC SAC
SAC SBB* SSB SBC SBC
SBC scc ssc ABC ABC
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) TABLE 2

' Variance of Estimated Treatment Differences for Designs of Table i
_ (Table shows multiples of 0°001 o2)

Design S-A S-B - sC A-B A-C B-C
1 251 251 255 300 312 a2
2 257 257 280 o302 362 362

3 244 244 219 300 331 331

4 395 480 480 875 875 960

5 258 258 285 261 295 295

6 273 276 . 276 321 321 7300

7 287 287 314 369 453 453

8 285 272 272 309 309 316

9 283 283 283 - 261 267 267

10 247 247 247 293 203 293

TABLE 3

Finai Systolic Blood Pressures (mg. Hg.) of Cats

Drug A - 4 _ Drug B
90 ' 55
80 T 80
100 80
80 70
80 80
95 ) . 95
90 . 85
75 . ' 70
85 50
85 70

) Means 860 - 73.5
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TABLE 4
Ratios of Mean Square D:viations for Transfor mations of Data in Table 3
Values of g
49 —d5 40 —30  —20 0 50 100 1000

Values of p

—600 0000 0000 0000 0000 000l 0005 003 0073 0263
—500 0000 0000 0030 0000 0002 0010 005 0093 0272
—4-00 0000 0000 0000 000 0005 0020 0072 0117 0280
—3'50 0000 0000 0000 0-002 0008 0027 008 0131 0285
—300 0000 0000 0000 0004 0013 0038 0101 0146 0289
250 0000 0000 ©000I 0008 0-:021 0052 0119 0162 0294
—200 0000 0000 0003 0015 0033 0070 0139 0180 0298
—1'50 0000 0002 0008 0029 0052 0093 0162 0201 0303
—100 0000 0007 0020 0051 0079 0123 0188 0222 0308
—0'50 0004 0024 0048 0087 0118 0161 0218 0246 0312
0:00 0033 0071 0101 0142 1170 0207 0250 0271 0317
025 0070 OlIl 0141 0179 0203 0233 0268 0284 0319
050 0132 0167 0192 0221 . 0240 0262 0287 0298 0322
075 0219 0239 0254 0271 0281 0293 0306 0312 0324
100 0327 0327 0327 0327 0327 0327 0327 0327 0327
1’50 058 0543 0505 0459 0432 0402 0371 0358 0332
200 0885 079 0716 0616 0555 0487 0418 0391 0337
250 11192 1069 0950 0792 0694 0583 0470 0426 0342
300, 1502 1350  1'197 0984 0846 0687 0526 0463 0347
350 1'813 1634 - 1451 1186 1009 0799 0585 0'502 0352
400 2126 1921 1709 1395 14180 0919 0648 0543 0357
500 2775 2509 2236 1827 1540 1176 0-784  0'631 0368
600 3487 3139 2790 2277 1917 1452. 0932 0727 0378

. TABLE 5
Values of t for Transformations of Data in Table 3
Values of ¢
—49 —45 —40 —30 —20 0 50 100 1000

Values of p

—6°00 1-000 1-017 1-098 1-300 1477 1756 2:146 2313 2:526
—5'00 1-000 1-035 1-150 1-390 1:586 1-873 2228 2:364  2°528
—4-00 1001 1-:072 1-233 1-515 1:725 2:005 2 306 2411 2:529
—350 1-002 1-104 1293 1-595 1-808 2075 2:343 2432 2530
—3-00 1-005 1151 1-370 1-689 1-899 2:147 2-379 2452 2:530
—2'50 1-014 1-221 1-471 1-798 1-998 2:219 2411 2470 2-531
—2:00 1:035 1-326 1-600 1-921 2:101 2288 2441 2°486 2 531
—1'50 1-090 1479 1-760 2054 2206 2354 2-467 2-490 2:532
—1'00 1225 1:691 1-950 2°191 2-307 2:412 2400 2511 2532
—0°50 1518 1957 2153 2321 2395 . 2446l 2507 2520 2-532
000 1-971 2-233 2-341 2'428 2 466 2498 2:521 2:527 2-532
025 2:196 2:351 2:417 2470 2493 2512 2-526 2-529 2°533
050 2-373 2443 2-475 2:502 2513 2:522 2529 2:531 2533
075 2484  2:504 2:514 2522 2:526 2529 2531 2-532 2533
1-00 2533 2-533 2:533 2533 2:533 2-533 2533 2-533 2°533
150 2498 2508 2515 2522 23525 2:529 2'531 2:532 2533
200 2377 2:413 2:443 2477 2494 2'512 2525  2'529 2°532
2:50 2233 2289 2:341 2-407 2:444 2-483 2514 2523 2532
300 2091 2159 2-228 2322 2:381 2444 2499 2-515 2:532
3:50 1-961 2:036 2114 2:231 2:309 2398 .~ 2479 2:505 2-532
400 1-846 1-923  2-007 2139 2233 2-347 2457 2:492 2-531
5:00 1-655 1731 1-818 1965 2:079 2233 2402 2462 2°530
600 1'510 1'580 1-664 1-812 1935 2-116 2338 2:424 2:529
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TABLE 6
Differences between Back-transforms of Means for Transformations of Data in Table 3
Values of ¢
—49 —15 —40 . —30 —20 0 50 100 1000
Values of p
—6'00 31-27 29-78. 28-01 2502 2271 1966 16:37 1511 12:87
—5-00 3164 2968 2748 2402 2159 18'67 1578 14-71 12-82
—4-00 31-97 29:30 2653 2265 20°24 1761 . 15°20 1432 12:76
—3'50 3210 2892 2582 21-80 19:48 17-07 1491 14-13 1274
—3-00 32:17  -28°32 24-88 20°85 1868 16°52 14°62 13:94 1271
—2°50 32:13 2741 2370 19-80 17 86 15°98 1434 13:75 1268
—2-00 31°84 26 04 22:24 18-69 17:02 15°43 14°06 13:56 12:66
—1'50 30-97 24-09 20°54 17-54 16°18 1490 1379 13-38 1263
—1-00 2873 2158 1870 1639 15:36 1438 13-52 13:20 12°61
—0'50. 2418 18-81 16-86 15-30 14-58 13-88 13-25 1302 12-58
0-00 1876 16 22 15°18 14 27 13:83 13-40 1300 12:84 12°55
025 16°57 1510 14:42 13-79 13:48 13:16 12-87 1276 12-54
050 14-85 14-11 13:72 1333 13 14 12-94 12:74 12:67 12°53
075 13-52 1325 13-08 1290 1281 12:72 12:62 1258 12751
100 1250 12'50 12°50 12-50 1250 12 50 1250 12°50 12°50
1°50 1104 ~ 11-30 11-51 11-76 1192 12:09 12 26 12°33 12°47
2:00 1006 1039 1070 I1-12 11:38 1170 1203 12-17 1245
2°50 933 968 10°04 10°56 10°90 11-33 11-81 12:01 12:42
3:00 876 912 949 10°06 1047 1099 11'59 11-85 12°40
350 830 865 - 9:03 9-63 10°08 10-67 11-38 1170 12 37
4-00 792 825 8:63 925 972 1037 11'18 11'55 12-34
500 7:29 761 7-98 860 910 9:82 10°79 11°26 12:29°
600 . 679 7-10 746 807 8'58 9:35 10°43 10 98 1224
TABLE 7
Pseudo-t Values from Table 6 and Approximate Standard Error
: Values of ¢
—49 —45 —40 —-30 —20 -0 50 100 1000
Values of p
—600 0000 0000 0010 0115 0337 0872 11745 2°104 2522
—500 0°000 0002 0-031 0235 0-548 1'146 1:930 2213 2:524
—400 0-000 0-013 0099 0456 0856 1-459 2:101 2308 2:527
--3-50 . 0000 0-030 0171 0621 1:048 1-623 2°179 2351 2528
—300 0-001 0 069 0290 0-829 1:263 1786 2:251 2389 2'529
—2'50 0-005 0150 0474 1079 1°493 1-944 2316 2:423 2:530
—2-00 0-021 0315 0745 1-364 1727 2:091 2374 2:452 2:531
—I1"50 0-090 0612 1104 1664 1952 2:222 2:422 2477 2:531
—100 0334 1-:070 1-523 1:952 2:153 2:333, 2462 2497 2:532
—0'50 0°949 1°625 1934 2:200 2:318 2:421 2493 2°513 2:532
0-00 1-783 2:119 2:264 2:385 2:438 2483 2-515 2:524 2:532
025 2:119 2:301 2382 2450 2:479 2-505 2:523 2:528 2-532
0'50 2:353 2:430 2-465 2496 2:509 2:520 2:528 2:530 2-533
075 2485 2:505 2515 2'523 2:526 2:529 °  2-532 2:532 2-533
100 2533 2533 2°533 2'533 2:533 2533 2533 2533 2:533
1-50 2:463 2:479 2491 . 2'506 2°514 2:522 2 529 2:530 2-532
200 2:294 2:340 2:381 2433 2:462 2492 2517 2:524 2532
2:50 2102 2:171 2-238 2329 2-385 2:4435 2:498 2-514 2:532
3-00 1-918 2+001 2:086 2°210 2292 2:386 2473 2:500 2532
350 1752 1-841 1-938 2086 2190 2317 2'442 2-483 2531
4:00 1-607 1-698 1:799 1-964 2085 2242 2:406 2:463 2:530
5:00 1-371 1-458° 1:561 1:738 1-881 2084 2:323 ° 2:415 2:529
600 1-193 1273 1:370 1-545 1:696 1-926 2:230 2:357

2-527




